Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A genetic similarity rule determines arthropod community structure.

Identifieur interne : 003E83 ( Main/Exploration ); précédent : 003E82; suivant : 003E84

A genetic similarity rule determines arthropod community structure.

Auteurs : R K Bangert [États-Unis] ; R J Turek ; B. Rehill ; G M Wimp ; J A Schweitzer ; G J Allan ; J K Bailey ; G D Martinsen ; P. Keim ; R L Lindroth ; T G Whitham

Source :

RBID : pubmed:16626460

Descripteurs français

English descriptors

Abstract

We define a genetic similarity rule that predicts how genetic variation in a dominant plant affects the structure of an arthropod community. This rule applies to hybridizing cottonwood species where plant genetic variation determines plant-animal interactions and structures a dependent community of leaf-modifying arthropods. Because the associated arthropod community is expected to respond to important plant traits, we also tested whether plant chemical composition is one potential intermediate link between plant genes and arthropod community composition. Two lines of evidence support our genetic similarity rule. First, in a common garden experiment we found that trees with similar genetic compositions had similar chemical compositions and similar arthropod compositions. Second, in a wild population, we found a similar relationship between genetic similarity in cottonwoods and the dependent arthropod community. Field data demonstrate that the relationship between genes and arthropods was also significant when the hybrids were analysed alone, i.e. the pattern is not dependent upon the inclusion of both parental species. Because plant-animal interactions and natural hybridization are common to diverse plant taxa, we suggest that a genetic similarity rule is potentially applicable, and may be extended, to other systems and ecological processes. For example, plants with similar genetic compositions may exhibit similar litter decomposition rates. A corollary to this genetic similarity rule predicts that in systems with low plant genetic variability, the environment will be a stronger factor structuring the dependent community. Our findings argue that the genetic composition of a dominant plant can structure higher order ecological processes, thus placing community and ecosystem ecology within a genetic and evolutionary framework. A genetic similarity rule also has important conservation implications because the loss of genetic diversity in one species, especially dominant or keystone species that define many communities, may cascade to negatively affect the rest of the dependent community.

DOI: 10.1111/j.1365-294X.2005.02749.x
PubMed: 16626460


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A genetic similarity rule determines arthropod community structure.</title>
<author>
<name sortKey="Bangert, R K" sort="Bangert, R K" uniqKey="Bangert R" first="R K" last="Bangert">R K Bangert</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA. randy.bangert@nau.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Turek, R J" sort="Turek, R J" uniqKey="Turek R" first="R J" last="Turek">R J Turek</name>
</author>
<author>
<name sortKey="Rehill, B" sort="Rehill, B" uniqKey="Rehill B" first="B" last="Rehill">B. Rehill</name>
</author>
<author>
<name sortKey="Wimp, G M" sort="Wimp, G M" uniqKey="Wimp G" first="G M" last="Wimp">G M Wimp</name>
</author>
<author>
<name sortKey="Schweitzer, J A" sort="Schweitzer, J A" uniqKey="Schweitzer J" first="J A" last="Schweitzer">J A Schweitzer</name>
</author>
<author>
<name sortKey="Allan, G J" sort="Allan, G J" uniqKey="Allan G" first="G J" last="Allan">G J Allan</name>
</author>
<author>
<name sortKey="Bailey, J K" sort="Bailey, J K" uniqKey="Bailey J" first="J K" last="Bailey">J K Bailey</name>
</author>
<author>
<name sortKey="Martinsen, G D" sort="Martinsen, G D" uniqKey="Martinsen G" first="G D" last="Martinsen">G D Martinsen</name>
</author>
<author>
<name sortKey="Keim, P" sort="Keim, P" uniqKey="Keim P" first="P" last="Keim">P. Keim</name>
</author>
<author>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
</author>
<author>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16626460</idno>
<idno type="pmid">16626460</idno>
<idno type="doi">10.1111/j.1365-294X.2005.02749.x</idno>
<idno type="wicri:Area/Main/Corpus">003E23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003E23</idno>
<idno type="wicri:Area/Main/Curation">003E23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003E23</idno>
<idno type="wicri:Area/Main/Exploration">003E23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A genetic similarity rule determines arthropod community structure.</title>
<author>
<name sortKey="Bangert, R K" sort="Bangert, R K" uniqKey="Bangert R" first="R K" last="Bangert">R K Bangert</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA. randy.bangert@nau.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011</wicri:regionArea>
<placeName>
<region type="state">Arizona</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Turek, R J" sort="Turek, R J" uniqKey="Turek R" first="R J" last="Turek">R J Turek</name>
</author>
<author>
<name sortKey="Rehill, B" sort="Rehill, B" uniqKey="Rehill B" first="B" last="Rehill">B. Rehill</name>
</author>
<author>
<name sortKey="Wimp, G M" sort="Wimp, G M" uniqKey="Wimp G" first="G M" last="Wimp">G M Wimp</name>
</author>
<author>
<name sortKey="Schweitzer, J A" sort="Schweitzer, J A" uniqKey="Schweitzer J" first="J A" last="Schweitzer">J A Schweitzer</name>
</author>
<author>
<name sortKey="Allan, G J" sort="Allan, G J" uniqKey="Allan G" first="G J" last="Allan">G J Allan</name>
</author>
<author>
<name sortKey="Bailey, J K" sort="Bailey, J K" uniqKey="Bailey J" first="J K" last="Bailey">J K Bailey</name>
</author>
<author>
<name sortKey="Martinsen, G D" sort="Martinsen, G D" uniqKey="Martinsen G" first="G D" last="Martinsen">G D Martinsen</name>
</author>
<author>
<name sortKey="Keim, P" sort="Keim, P" uniqKey="Keim P" first="P" last="Keim">P. Keim</name>
</author>
<author>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
</author>
<author>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
</author>
</analytic>
<series>
<title level="j">Molecular ecology</title>
<idno type="ISSN">0962-1083</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arthropods (genetics)</term>
<term>Arthropods (physiology)</term>
<term>Environment (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Polymorphism, Restriction Fragment Length (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (parasitology)</term>
<term>Populus (physiology)</term>
<term>Trees (genetics)</term>
<term>Trees (parasitology)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arbres (génétique)</term>
<term>Arbres (parasitologie)</term>
<term>Arbres (physiologie)</term>
<term>Arthropodes (génétique)</term>
<term>Arthropodes (physiologie)</term>
<term>Environnement (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Polymorphisme de restriction (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (parasitologie)</term>
<term>Populus (physiologie)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arthropods</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Arthropodes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Arbres</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Arthropodes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arthropods</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Environment</term>
<term>Genetic Variation</term>
<term>Models, Biological</term>
<term>Models, Genetic</term>
<term>Polymorphism, Restriction Fragment Length</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Environnement</term>
<term>Modèles biologiques</term>
<term>Modèles génétiques</term>
<term>Polymorphisme de restriction</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We define a genetic similarity rule that predicts how genetic variation in a dominant plant affects the structure of an arthropod community. This rule applies to hybridizing cottonwood species where plant genetic variation determines plant-animal interactions and structures a dependent community of leaf-modifying arthropods. Because the associated arthropod community is expected to respond to important plant traits, we also tested whether plant chemical composition is one potential intermediate link between plant genes and arthropod community composition. Two lines of evidence support our genetic similarity rule. First, in a common garden experiment we found that trees with similar genetic compositions had similar chemical compositions and similar arthropod compositions. Second, in a wild population, we found a similar relationship between genetic similarity in cottonwoods and the dependent arthropod community. Field data demonstrate that the relationship between genes and arthropods was also significant when the hybrids were analysed alone, i.e. the pattern is not dependent upon the inclusion of both parental species. Because plant-animal interactions and natural hybridization are common to diverse plant taxa, we suggest that a genetic similarity rule is potentially applicable, and may be extended, to other systems and ecological processes. For example, plants with similar genetic compositions may exhibit similar litter decomposition rates. A corollary to this genetic similarity rule predicts that in systems with low plant genetic variability, the environment will be a stronger factor structuring the dependent community. Our findings argue that the genetic composition of a dominant plant can structure higher order ecological processes, thus placing community and ecosystem ecology within a genetic and evolutionary framework. A genetic similarity rule also has important conservation implications because the loss of genetic diversity in one species, especially dominant or keystone species that define many communities, may cascade to negatively affect the rest of the dependent community.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16626460</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>06</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2008</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0962-1083</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>15</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology</Title>
<ISOAbbreviation>Mol Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>A genetic similarity rule determines arthropod community structure.</ArticleTitle>
<Pagination>
<MedlinePgn>1379-91</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We define a genetic similarity rule that predicts how genetic variation in a dominant plant affects the structure of an arthropod community. This rule applies to hybridizing cottonwood species where plant genetic variation determines plant-animal interactions and structures a dependent community of leaf-modifying arthropods. Because the associated arthropod community is expected to respond to important plant traits, we also tested whether plant chemical composition is one potential intermediate link between plant genes and arthropod community composition. Two lines of evidence support our genetic similarity rule. First, in a common garden experiment we found that trees with similar genetic compositions had similar chemical compositions and similar arthropod compositions. Second, in a wild population, we found a similar relationship between genetic similarity in cottonwoods and the dependent arthropod community. Field data demonstrate that the relationship between genes and arthropods was also significant when the hybrids were analysed alone, i.e. the pattern is not dependent upon the inclusion of both parental species. Because plant-animal interactions and natural hybridization are common to diverse plant taxa, we suggest that a genetic similarity rule is potentially applicable, and may be extended, to other systems and ecological processes. For example, plants with similar genetic compositions may exhibit similar litter decomposition rates. A corollary to this genetic similarity rule predicts that in systems with low plant genetic variability, the environment will be a stronger factor structuring the dependent community. Our findings argue that the genetic composition of a dominant plant can structure higher order ecological processes, thus placing community and ecosystem ecology within a genetic and evolutionary framework. A genetic similarity rule also has important conservation implications because the loss of genetic diversity in one species, especially dominant or keystone species that define many communities, may cascade to negatively affect the rest of the dependent community.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bangert</LastName>
<ForeName>R K</ForeName>
<Initials>RK</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, PO Box 5640, Flagstaff, AZ 86011, USA. randy.bangert@nau.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Turek</LastName>
<ForeName>R J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rehill</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wimp</LastName>
<ForeName>G M</ForeName>
<Initials>GM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schweitzer</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Allan</LastName>
<ForeName>G J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>J K</ForeName>
<Initials>JK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Martinsen</LastName>
<ForeName>G D</ForeName>
<Initials>GD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keim</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>R L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whitham</LastName>
<ForeName>T G</ForeName>
<Initials>TG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol</MedlineTA>
<NlmUniqueID>9214478</NlmUniqueID>
<ISSNLinking>0962-1083</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001181" MajorTopicYN="N">Arthropods</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012150" MajorTopicYN="N">Polymorphism, Restriction Fragment Length</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>4</Month>
<Day>22</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16626460</ArticleId>
<ArticleId IdType="pii">MEC2749</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-294X.2005.02749.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Arizona</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Allan, G J" sort="Allan, G J" uniqKey="Allan G" first="G J" last="Allan">G J Allan</name>
<name sortKey="Bailey, J K" sort="Bailey, J K" uniqKey="Bailey J" first="J K" last="Bailey">J K Bailey</name>
<name sortKey="Keim, P" sort="Keim, P" uniqKey="Keim P" first="P" last="Keim">P. Keim</name>
<name sortKey="Lindroth, R L" sort="Lindroth, R L" uniqKey="Lindroth R" first="R L" last="Lindroth">R L Lindroth</name>
<name sortKey="Martinsen, G D" sort="Martinsen, G D" uniqKey="Martinsen G" first="G D" last="Martinsen">G D Martinsen</name>
<name sortKey="Rehill, B" sort="Rehill, B" uniqKey="Rehill B" first="B" last="Rehill">B. Rehill</name>
<name sortKey="Schweitzer, J A" sort="Schweitzer, J A" uniqKey="Schweitzer J" first="J A" last="Schweitzer">J A Schweitzer</name>
<name sortKey="Turek, R J" sort="Turek, R J" uniqKey="Turek R" first="R J" last="Turek">R J Turek</name>
<name sortKey="Whitham, T G" sort="Whitham, T G" uniqKey="Whitham T" first="T G" last="Whitham">T G Whitham</name>
<name sortKey="Wimp, G M" sort="Wimp, G M" uniqKey="Wimp G" first="G M" last="Wimp">G M Wimp</name>
</noCountry>
<country name="États-Unis">
<region name="Arizona">
<name sortKey="Bangert, R K" sort="Bangert, R K" uniqKey="Bangert R" first="R K" last="Bangert">R K Bangert</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003E83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003E83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16626460
   |texte=   A genetic similarity rule determines arthropod community structure.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16626460" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020